Weighted measure algebras and uniform norms
نویسندگان
چکیده
منابع مشابه
Weighted Convolution Measure Algebras Characterized by Convolution Algebras
The weighted semigroup algebra Mb (S, w) is studied via its identification with Mb (S) together with a weighted algebra product *w so that (Mb (S, w), *) is isometrically isomorphic to (Mb (S), *w). This identification enables us to study the relation between regularity and amenability of Mb (S, w) and Mb (S), and improve some old results from discrete to general case.
متن کاملamenability of weighted measure algebras
let g be a locally compact group, and let ω be a weight on g. we show that the weightedmeasure algebra m(g,ω) is amenable if and only if g is a discrete, amenable group andsup{ω(g) ω(g−1) : g ∈ g} < ∞, where ω(g) ≥ 1 (g ∈ g) .
متن کاملweighted convolution measure algebras characterized by convolution algebras
the weighted semigroup algebra mb (s, w) is studied via its identification with mb (s) together with a weighted algebra product *w so that (mb (s, w), *) is isometrically isomorphic to (mb (s), *w). this identification enables us to study the relation between regularity and amenability of mb (s, w) and mb (s), and improve some old results from discrete to general case.
متن کاملM-IDEAL STRUCTURE IN UNIFORM ALGEBRAS
It is proved that if A is aregular uniform algebra on a compact Hausdorff space X in which every closed ideal is an M-ideal, then A = C(X).
متن کاملHilbert Norms For Graded Algebras
This paper presents a solution to a problem from superanalysis about the existence of Hilbert-Banach superalgebras. Two main results are derived: 1) There exist Hilbert norms on some graded algebras (infinite-dimensional superalgebras included) with respect to which the multiplication is continuous. 2) Such norms cannot be chosen to be submultiplicative and equal to one on the unit of the algeb...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Studia Mathematica
سال: 2006
ISSN: 0039-3223,1730-6337
DOI: 10.4064/sm177-2-3